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1. Introduction and Background 

The effects associated with using marijuana are due to the active ingredient, a 
compound named tetrahydrocannabinol (THC), binding to and partially activating 
the cannabinoid receptor (CB) in the brain.1,2 As THC only partially activates the 
receptor, or acts as a partial agonist, the effects are usually transient and 
comparatively minor compared with other illegal drugs such as heroin, which acts 
as a full agonist on opioid receptors.3 Recently, laboratory-developed synthetic 
cannabinoids (SCs) have been developed that act as tight binding, full agonists of 
the CB receptors.4–8 The effects of these drugs can range from increased heart rate 
and vomiting to panic, hallucinations, and psychosis. 2,6,9,10 SCs may mimic some 
of the effects of using marijuana; however, because they bind to the receptors with 
much higher affinity and act as full agonists, the effects are prolonged and often 
lead to permanent brain damage.10–12 SCs are often added to dried plant material 
and sold as incense, potpourri, or smoking mixtures in gas stations and smoke 
shops.13 These drugs have names such as Spice, K2, and Yucatan Fire.4,7,10 

The use of these substances is increasing across the United States and many other 
countries. In August 2014, the governor of New Hampshire declared a state of 
emergency after more than 40 overdoses were reported in just 72 hours from 
smoking a synthetic cannabinoid substance that was sold in convenience stores.14 
SC usage has also become a major problem among the US military.15,16 A 2012 
study of military personnel showed that of those tested, more than half tested 
positive for SCs.17  Studies have shown that one primary reason for the popularity 
of SCs among the civilian and military populations is that they are assumed to be 
difficult to detect in standard drug screens and they are often available over the 
counter.15,18 

Due to the pronounced deleterious effects of SC usage, there has been a push to 
make these substances illegal, yet the scheduling of these drugs makes it difficult. 
Generally, as soon a particular SC compound is scheduled, the manufacturers create 
several new compounds with slight changes to the inactive parts of the backbone to 
circumvent the laws and avoid detection, as shown in Fig. 1.4,7,19 
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Fig. 1 Basic chemical structures of the 7 different synthetic cannabinoid groups. The R 
groups are positions at which substituent variants are possible. 

Adding to the difficult nature of prosecution and detection of those using SCs is the 
manner by which these compounds are detected. Typically, detection of SCs is 
conducted using liquid chromatography–coupled mass spectrometry (LC-MS) or 
gas chromatography coupled mass spectrometry. These methods require 
comparison to a known compound, which means that SCs must be fully 
characterized prior to one being able to detect them in samples.12,20 There are 
hundreds of different forms of synthetic cannabinoids and with more being 
continuously created, this method of detection cannot keep up with the ever-
changing drug. This leads to ultra-long turnaround times (6–8 months) and 
backlogs of thousands of samples in toxicology laboratories.9 

Clearly, a new detection method must be developed that does not require previous 
characterization of SCs for success. The method should be able to detect all SCs 
independent of chemical structure and without the need for prior characterization. 
Such a method would greatly reduce the backlog at testing facilities, as it would act 
as a first line test where the non-SC compounds can be removed from the sample 
inventory. One approach to create such a sensor would be to utilize the CB receptor 
as a basis for detection. If a compound is an SC, then it will only bind to the CB 
receptor. Thus, the system would be highly specific and robust in recognizing all 
different iterations of SCs.  

Recently, receptor-protein-based fluorescent biosensors have been used to measure 
ligand/protein interactions. In this method, a receptor protein is conjugated to a 
quantum dot and a dark quencher molecule is conjugated to a receptor ligand. The 
dark quencher/low-affinity ligand binds to the protein-quantum dot compound and

 

NaphthylmethylindenesNaphthoylindoles Naphthylmethylindoles Naphthoylpyrroles

Phenylacetylindoles Cyclohexylphenols Classical Cannabinoids
(Dibenzopyrans)



 

Approved for public release; distribution is unlimited. 
3 

the fluorescence of the quantum dot is quenched. When a test ligand with a higher 
affinity binds the protein, the dark quencher/low-affinity ligand is displaced and 
fluorescence is observed. Medintz et al. constructed such a sensor in 2003 to 
monitor maltose binding to the maltose binding protein.21  

This type of sensor would be advantageous for use as an SC detector as it would 
give a quick result and be capable of detecting any substance binding the CB 
receptor. This would allow the technology to keep up with the ever-changing 
compounds being manufactured. In ARL-TR-7188, Conjugation of the Dark 
Quencher QSY 7 to Various Synthetic Cannabinoids for Use in Fluorescence-
Based Detection Platforms, 2 SC:dark quencher conjugates were synthesized and 
characterized for the use in fluorescence-based cannabinoid detection platforms.22 
However, the conjugates synthesized in ARL-TR-7188 were not sufficiently pure 
to test the binding affinity of the conjugate to the receptor. It is imperative that the 
low-affinity dark quencher conjugates be pure, otherwise binding of the parent 
compound may be detected. This may lead to a very high background in the assay 
as the parent compound has a higher affinity for the receptor than the conjugated 
compound. Thus, to get an accurate measurement of the affinity of the dark 
quencher conjugate for the CB receptor, purification of the conjugates must be 
optimized to yield samples 100% pure of parent compound. 

Five different SC:dark quencher conjugates were purified for future use in a 
receptor-based SC detection assay, as shown in Fig. 2. The associated predicted 
masses are shown in Table 1. The purity was verified using LC-MS. Results 
demonstrated that 3 of the compounds were successfully synthesized and purified 
(JWH018:QSY 7 amine, JWH018:(PEG)4:QSY7 amine, and JWH073:QSY 7 
amine), whereas 2 of the compounds were either not correctly synthesized or very 
quickly degraded to nonuseful products (JWH368:QSY 7 amine and 
JWH368:(PEG)4:QSY 7 amine). 
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Fig. 2 Structures of the 5 synthesized SC conjugates 

Table 1 Expected masses of compounds used in this study 

Compound Expected mass 
(g/mol) 

JWH018 pentanoic acid 371.4 
JWH368 385.5 

QSY 7 amine 814.86 
JWH018 pentanoic acid:(PEG)4:QSY 7 amine 1,095.42 

JWH368:(PEG)4: QSY 7 amine 1,337.4 
JWH073 butanoic acid: QSY 7 amine 1,081.42 

 

2. Synthesis of Materials 

2.1 Chemicals 

Dimethylformamide (DMF), acetonitrile, and formic acid were purchased from 
Sigma-Aldrich (St. Louis, MO). JWH018 pentanoic acid, JWH073 butanoic acid, 
and JWH368 were purchased from Cayman Chemical (Ann Arbor, MI). QSY 7 
amine was purchased from Life Technologies (Carlsbad, CA). All solvents were of 
high-pressure liquid chromatography (HPLC)–grade or higher and used without 
further purification. Ultrapure milli-Q water was used for all experiments. 
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2.2 Purification of SC:Dark Quencher Conjugates 

The conjugates were synthesized as previously described in ARL-TR-7188.22 
Briefly, molar equivalents of the dark quencher and the SC were mixed with DMF. 
O-Benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate was added 
and stirred for 5 min. Then triethylamine was added and the reaction was incubated 
for 4 h. In addition to the 2 compounds QSY 7:JWH073 n-butanoic acid conjugate 
and QSY 7:JWH018 n-pentanoic acid conjugate synthesized previously, the dark 
quencher QSY 7 amine was reacted with the CB receptor ligand JWH368 via the 
same procedure. A polyethyleneglycol (PEG) linker was added between SCs, 
JWH018 n-pentanoic acid and JWH368, and the dark quencher to allow for more 
flexibility. 

The JWH018:(PEG)4:QSY 7 amine, JWH368:(PEG)4:QSY 7 amine, and 
JWH073:QSY 7 amine conjugates were purified using HPLC. The LC column was 
an Agilent Eclipse XDB C18 column (250- × 9.4-mm ID, 5-µm particle size), 
maintained at 25 °C with a mobile phase flow rate of 2.00 mL/min. Gradient elution 
mobile phases consisted of A (5 mM ammonium formate in water) and B 
(acetonitrile). The gradients used for the purification of each conjugate are shown 
in Tables 2–4. The detection wavelengths used in this study were 218, 316, and 
560 nm. The expected mass of each compound can be seen in Table 1.  

Table 2 Gradients of solvents used in this study for the HPLC purification of 
JWH368:(PEG)4:QSY 7 amine and JWH368:QSY 7 amine 

Time 
(min) %B 

5 10 
10 45 
15 50 
20 55 
27 58 
30 100 

Table 3 Gradients of solvents used in this study for the HPLC purification of 
JWH018:(PEG)4:QSY 7 amine and JWH018:QSY 7 amine 

Time 
(min) %B 

5 10 
10 50 
15 65 
20 70 
25 75 
30 80 
35 85 
40 90 
45 100 
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Table 4 Gradients of solvents used in this study for the HPLC purification of 
JWH073:QSY 7 amine 

Time  
(min) %B 

5 15 
10 30 
15 50 
20 70 
30 80 
40 90 
50 100 

 

2.3 LC-MS Analysis of SC:Dark Quencher Conjugates 

The overall purity of the JWH018, JWH073, and JWH368 conjugates was analyzed 
via LC-MS. A single quadrupole Agilent 6130 mass spectrometer was used in 
conjunction with an Agilent 1200 series LC system (Agilent Technologies, Santa 
Clara, CA). The LC column was an Agilent Eclipse XDB C18 column (150- × 
4.6-mm ID, 5-µm particle size), maintained at 25 °C with a mobile phase flow rate 
of 0.6 mL/min. Gradient elution mobile phases consisted of A (5 mM ammonium 
formate in water) and B (acetonitrile). The same elution gradients shown previously 
were used. Quantification of the analytes was undertaken using positive scan mode 
with a molecular mass scan from 100 to 1,200 g/mol.   

3. Results and Discussion 

3.1 LC-MS Gradient Studies for Purification of Conjugates  

Liquid chromatography was run on the conjugates, JWH018:(PEG)4:QSY 7 amine, 
JWH368:(PEG)4:QSY 7 amine, and JWH073:QSY 7 amine. The gradients for each 
conjugate were optimized to allow for the most efficient separation. After the 
gradient was optimized and the peaks were collected, LC-MS was performed on 
the peaks to determine which peaks were of value. The elution peaks from the 
LC-MS are shown in Figs. 3–5. 
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Fig. 3 The peaks observed during the purification of JWH018:(PEG)4:QSY 7 amine using 
the optimized gradient (top). A zoomed-in view of the top figure showing the peaks collected 
during that run and the associated mass spec data (bottom). The peak indicated with a number 
1 represents the JWH018:(PEG)4:QSY 7 amine conjugate. The peak indicated with a number 
2 represents the JWH018:QSY 7 amine conjugate.
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Fig. 4 The peaks observed during the purification of JWH368:(PEG)4:QSY 7 amine using 
the optimized gradient (top). A zoomed-in view of the top figure showing the peaks collected 
during that run (middle). The peak indicated with a number 1 represents the 
JWH368:(PEG)4:QSY 7 amine conjugate. The peak indicated with a number 2 represents the 
JWH368:QSY 7 amine conjugate. The peak indicated with a number 3 represents the 
JWH368 compound. The mass spectra of each of the 3 peaks collected (bottom).
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Fig. 5 The peaks observed during the purification of JWH073:QSY 7 amine using the 
optimized gradient (top). A zoomed-in view of the top figure showing the peaks collected 
during that run (bottom) and the associated mass spec data. The peak indicated with a box 
represents the JWH073:QSY 7 amine conjugate. The second portion of the peak, shown on 
the bottom, indicates impurities. 

During the separation of these conjugates, it was discovered that during synthesis 
of JWH368:(PEG)4:QSY 7 amine and JWH018:(PEG)4:QSY 7 amine, 2 part 
conjugates of the JWH compound and the dark quencher without the PEG linker 
were also formed (JWH368:QSY 7 amine and JWH018:QSY 7 amine). These 
conjugates were verified with mass spectrometry. The PEG spacer and JWH 
compound were added first and allowed to react. The reaction must have been 
inefficient and some JWH compound remained. This allowed the JWH compound 
to react with the dark quencher when it was added to the reaction. Many additional 
peaks can be seen in the top portion of Figs. 3–5. These other peaks are impurities 
and unreacted compounds that can interfere with future binding affinity studies. It 
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is therefore necessary to separate all of the synthesized conjugates for downstream 
testing. All of the peaks identified in Figs. 3–5 were collected, lyophilized, and the 
purity was verified through mass spectrometry. 

The structures of the SC metabolites JWH073 n-butanoic acid and JWH018 
n-pentanoic acid are very similar and differ only by one carbon, as seen previously 
in Fig. 2. Due to the similarity in structure, it would be expected that the conjugates 
of these structures with the dark quencher, QSY 7 amine, would elute from the 
HPLC column at similar times. JWH073:QSY 7 amine elutes at 33.5 min at 
approximately 83.5% solvent B. JWH018:QSY 7 amine elutes at 37.5 min at 
approximately 87.5% solvent B. These are similar elution times given that the 
JWH368:QSY 7 amine conjugate elutes at around 19 min at approximately 54% 
solvent B.  

3.2 LC-MS Analysis of SC:Dark Quencher Conjugates 

After HPLC separation had been completed with the conjugates, the separated 
products were subjected to LC-MS and analyzed for purity.  

The LC-MS analysis of the JWH368:(PEG)4:QSY 7 amine conjugate showed a 
52% pure product that elutes at 28.019 min (Fig. 6). No parent compound was 
detected. The observed half mass of the conjugate was 632.8 g/mol. The expected 
mass was 1,337 g/mol (half mass of 668.5 g/mol). The observed mass was in slight 
discordance with the expected mass. There is also an additional mass of 422.3 g/mol 
observed. This mass is inconsistent with any compounds added to the reaction. It is 
likely due to degradation of the conjugate. The final product yield was 8.1 μg.  
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Fig. 6 LC chromatogram (top) and mass (bottom) of purified the 3-part conjugate, 
JWH368:(PEG)4:QSY 7 amine. The conjugate has a retention time of 28.019 min and an 
observed half mass+ of 632.8 g/mol (expected: 1,337 g/mol nonionized). 
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Analysis of the JWH368:QSY 7 amine conjugate with LCMS showed a 98% pure 
product that elutes at 34.3 min (Fig. 7). The observed mass of the conjugate was 
1,017.4 g/mol, which is inconsistent with the expected mass of 1,108.4 g/mol. This 
may indicate an issue during synthesis or degradation of the compound after 
synthesis. Future nuclear magnetic resonance studies of both compounds will help 
to explain these discrepancies. The final product yield was 20.0 μg. 

 
Fig. 7 LC chromatogram (top) and mass (bottom) of the purified 2-part conjugate, 
JWH368:QSY 7 amine. JWH368:QSY 7 amine has a retention time of 34.3 min and an 
observed mass+ of 1,017.4 g/mol (expected: 1,108.4 g/mol nonionized). 
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The LC-MS analysis of the JWH018 n-pentanoic acid:(PEG)4:QSY 7 amine 
conjugate showed a 90% pure product that elutes at 35.602 min (Fig. 8). The 
observed half mass of the conjugate was 672.0 g/mol, which is in very good 
agreement to the expected mass of 1,344.3 g/mol (half mass of 672.2 g/mol). There 
is an additional mass of 448.5 g/mol. This mass is inconsistent with any compounds 
added to the reaction. It is likely due to degradation of the conjugate. The final 
product yield was 55.4 μg.  

 
Fig. 8 LC chromatogram (top) and mass (bottom) of the purified 3-part conjugate 
JWH018:(PEG)4:QSY 7 amine. JWH018:(PEG)4:QSY 7 amine has a retention time of 
35.602 min and an observed half mass+ of 672.0 g/mol (expected: 1,344.3 g/mol nonionized). 
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Analysis of the JWH018 n-pentanoic acid:QSY 7 amine conjugate with LC-MS 
showed a 96% product that elutes at 44.494 min (Fig. 9). The observed mass of the 
conjugate was 1,095.4 g/mol, which is in very good agreement to the expected mass 
of 1,095.42 g/mol. The final product yield was 10.3 μg. 

 
Fig. 9 LC chromatogram (top) and mass (bottom) of the purified 2-part conjugate 
JWH018:QSY 7 amine. JWH018:QSY 7 amine has a retention time of 44.494 min and an 
observed mass+ of 1,095.4 g/mol (expected: 1,095.4 g/mol nonionized). 
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Finally, the LC-MS analysis of the JWH073 butanoic acid:QSY 7 amine conjugate 
showed a 98% pure product that elutes at 44 min (Fig. 10). The observed mass of 
the conjugate was 1,081.3 g/mol, which is in very good agreement to the expected 
mass of 1,081.42 g/mol. The final product yield was 43.8 μg.   

The yields for all of the compounds were lower than expected. There was 
significant loss during the purification methods. In the future, better collection 
techniques can be put in place to decrease the product loss. 

 
Fig. 10 LC chromatogram (top) and mass (bottom) of the purified JWH073 n-butanoic 
acid:QSY 7 amine conjugate. JWH073:QSY 7 amine has a retention time of 44 min and an 
observed mass+ of 1,081.3 g/mol (expected: 1,081.4 g/mol nonionized). 
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4. Summary and Conclusions 

We have successfully purified 3 SC:dark quencher conjugates, which were 
synthesized according to ARL-TR-7188 for use in a receptor-based SC detection 
assay. All of the conjugates eluted as strong peaks with minimal impurities and no 
detection of parent compounds. These SC:dark quencher conjugates are sufficiently 
pure of parent compound to allow for CB-receptor binding studies that are 
necessary to determine if these conjugates can be used in the cannabinoid detection 
platform in development here at ARL.   
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List of Symbols, Abbreviations, and Acronyms 

CB  cannabinoid receptor  

DMF  dimethylformamide 

HPLC  high-pressure liquid chromatography 

LC-MS  liquid chromatography–coupled mass spectrometry 

PEG  polyethyleneglycol 

SC  synthetic cannabinoid 

THC  tetrahydrocannabinol 
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